Abstract
Polygalacturonase-inhibiting proteins are leucine-rich repeat proteins that inhibit fungal endopolygalacturonases. The interaction of polygalacturonase-inhibiting protein with endopolygalacturonases limits the destructive potential of endopolygalacturonases and may trigger plant defense responses induced by oligogalacturonides. We examined the expression of fungal pg and plant Pvpgip genes in bean (Phaseolus vulgaris) stems infected with Sclerotinia sclerotiorum to determine whether any of them are associated with the infection process. Transcriptional analysis was carried out by means of semi-quantitative reverse transcription PCR or real-time PCR. The sspg1 gene was highly expressed during infection; sspg3 was regulated during the later phases of infection; sspg5 was more uniformly expressed during infection, whereas sspg6 was only weakly expressed. During the course of infection, Pvpgip1 transcripts were not detected at early stages, but they appeared 72 h post-inoculation. High levels of Pvpgip2 expression were observed during the initial phase of infection; the transcript peaked by 48 h post-inoculation and declined by 72 h post-inoculation. Pvpgip3 expression increased strongly at 96 h post-inoculation. Pvpgip4 was constantly present from 24 h post-inoculation until the end of the experiment. However, we detected higher levels of the Pvpgip4 transcript in the necrotic lesion area than in plants that had been mechanically wounded. Remarkably, only Pvpgip4 appeared to be moderately induced by mechanical wounding. These results provide evidence that endopolygalacturonases contribute to the infection process during host colonization by promoting the release of plant cell oligogalacturonides, which are powerful signaling molecules and may also activate plant defenses, such as polygalacturonase-inhibiting proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.