Abstract

Specialized transducing phages lambda tna (tryptophanase) harboring chromosomal DNA and genetic markers from the dnaA region of the Escherichia coli chromosome were isolated. Transductional analysis showed that some of these tnaA transducing phages carry two genes important in DNA replication, namely the dnaA gene (initiation of chromosome replication) and the gyrB gene (subunit B of DNA gyrase), formerly designated couR. The following clockwise order of genetic markers was found: uhp, gyrB, dnaA, rimA, tnaA, bglB. The gene-protein relationship was established by the determination of the gene products encoded on the chromosomal DNA of the different lambda tna. A 54 kD and a 91 kD polypeptide appear to be coded for by the dnaA and gyrB genes, respectively; the 91 kD protein is encoded on a region in which coumermycin sensitivity maps and is with respect to electrophoretic behavior identical to subunit B of DNA gyrase. The 54 kD protein is encoded on the region in which different independently isolated dnaA(Ts) mutations (dnaA5, dnaA46, dnaA167, dnaA203, dnaA204, dnaA205, dnaA211, dnaA508) are located. Additional genes which code for polypeptides with hitherto unknown functions were identified and mapped. The acriflavin sensitivity mutation acrB1 was found to be an allele of the gyrB gene (see "Note Added in Proof").

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.