Abstract

AbstractThe characterization of volatile matter (VM) release from solid fuel particles during fluidized‐bed combustion/gasification is relevant to the assessment of the reactor performance, as devolatilization rate affects in‐bed axial fuel segregation and VM distribution across the reactor. An experimental technique for the characterization of the devolatilization rate of solid fuels in fluidized beds is proposed. It is based on the analysis of the time series of pressure measured in a bench‐scale fluidized‐bed reactor as VM is released from a batch of fuel particles. A remarkable feature of the technique is the possibility to follow fast devolatilization with excellent time‐resolution. A mathematical model of the experiment has been developed to determine the time‐resolved devolatilization rate, the devolatilization time and the volume‐based mean molecular weight of the emitted volatile compounds. Devolatilization kinetics has been characterized for different solid fuels over a broad range of particle sizes. © 2011 American Institute of Chemical Engineers AIChE J, 2012

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.