Abstract

The fim genetic switch in the chromosome of Escherichia coli K-12 is an invertible DNA element that harbors the promoter for transcription of the downstream fim structural genes and a transcription terminator that acts on the upstream fimE regulatory gene. Switches oriented appropriately for structural gene transcription also allow fimE mRNA to read through, whereas those in the opposite orientation terminate the fimE message. We show here that termination is Rho dependent and is suppressed in a rho mutant or by bicyclomycin treatment when fimE mRNA is expressed by the fimE gene, either from a multicopy recombinant plasmid or in its native chromosomal location. Two cis-acting elements within the central portion of the 314-bp invertible DNA switch were identified as contributors to Rho-dependent termination and dissected. These fim sequence elements show similarities to well-characterized Rho utilization (rut) sites and consist of a boxA motif and a C-rich and G-poor region of approximately 40 bp. Deletion of the boxA motif alone had only a subtle negative effect on Rho function. However, when this element was deleted in combination with the C-rich, G-poor region, Rho function was considerably decreased. Altering the C-to-G ratio in favor of G in this portion of the switch also strongly attenuated transcription termination. The implications of the existence of a fimE-specific Rho-dependent terminator within the invertible switch are discussed in the context of the fim regulatory circuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.