Abstract

Non-alcoholic steatohepatitis (NASH) is an emerging public health problem without effective therapies. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into bioactive epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory and protective effects. However, the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the pathogenesis of NASH remains poorly understood. Our studies demonstrate that both mice with methionine-choline deficient (MCD) diet-induced NASH and humans with biopsy-confirmed NASH exhibited significantly higher free EET concentrations compared to healthy controls. Targeted disruption of Ephx2 (the gene encoding for soluble epoxide hydrolase) in mice further increased EET levels and significantly attenuated MCD diet-induced hepatic steatosis, inflammation and injury, as well as high fat diet-induced adipose tissue inflammation, systemic glucose intolerance and hepatic steatosis. Collectively, these findings suggest that dysregulation of the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH in vivo, and promoting the anti-inflammatory and protective effects of EETs warrants further investigation as a novel therapeutic strategy for NASH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.