Abstract

BackgroundPseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. Previous reports estimated that approximately 10% of its 6.6 Mbp genome varies from strain to strain and is therefore referred to as “accessory genome”. Elements within the accessory genome of P. aeruginosa have been associated with differences in virulence and antibiotic resistance. As whole genome sequencing of bacterial strains becomes more widespread and cost-effective, methods to quickly and reliably identify accessory genomic elements in newly sequenced P. aeruginosa genomes will be needed.ResultsWe developed a bioinformatic method for identifying the accessory genome of P. aeruginosa. First, the core genome was determined based on sequence conserved among the completed genomes of twelve reference strains using Spine, a software program developed for this purpose. The core genome was 5.84 Mbp in size and contained 5,316 coding sequences. We then developed an in silico genome subtraction program named AGEnt to filter out core genomic sequences from P. aeruginosa whole genomes to identify accessory genomic sequences of these reference strains. This analysis determined that the accessory genome of P. aeruginosa ranged from 6.9-18.0% of the total genome, was enriched for genes associated with mobile elements, and was comprised of a majority of genes with unknown or unclear function. Using these genomes, we showed that AGEnt performed well compared to other publically available programs designed to detect accessory genomic elements. We then demonstrated the utility of the AGEnt program by applying it to the draft genomes of two previously unsequenced P. aeruginosa strains, PA99 and PA103.ConclusionsThe P. aeruginosa genome is rich in accessory genetic material. The AGEnt program accurately identified the accessory genomes of newly sequenced P. aeruginosa strains, even when draft genomes were used. As P. aeruginosa genomes become available at an increasingly rapid pace, this program will be useful in cataloging the expanding accessory genome of this bacterium and in discerning correlations between phenotype and accessory genome makeup. The combination of Spine and AGEnt should be useful in defining the accessory genomes of other bacterial species as well.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-737) contains supplementary material, which is available to authorized users.

Highlights

  • Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients

  • Determination of the core genome of P. aeruginosa The core genome of a bacterial species consists of those sequences conserved among members of that species

  • These results suggest that AGEnt successfully identifies genomic regions containing genes that are accessory to the P. aeruginosa genome and that few potential accessory genes are being missed by this method

Read more

Summary

Introduction

Pseudomonas aeruginosa is an important opportunistic pathogen responsible for many infections in hospitalized and immunocompromised patients. P. aeruginosa can utilize multiple carbon sources for energy, respire under aerobic and anaerobic conditions, grow at temperatures up to 42°C, form biofilms, and resist many biocides and antibiotics [6,7,8]. Reflective of this diversity, P. aeruginosa has one of the largest genomes among bacterial human pathogens, averaging 6.6 Mbp in size. This includes a large number of genes encoding outer membrane proteins, transport systems, and enzymes involved in nutrient uptake and metabolism, as well as one of the largest proportions of regulatory genes (8.4%) among bacterial genomes [10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call