Abstract

This study investigates the compressive deformation behavior of a low-density polymeric foam at different strain rates. The material tested has micron-sized pores with a closed cell structure. The porosity is about 94%. During a uni-axial compressive test, the macroscopic stress–strain curve indicates a plateau region during plastic deformation. Finite Element Method (FEM) simulation was carried out, in which the yield criterion considered both components of Mises stress and hydrostatic stress. By using the present FEM and experimental data, we established a computational model for the plastic deformation behavior of porous material. To verify our model, several indentation experiments with different indenters (spherical indentation and wedge indentation) were carried out to generate various tri-axial stress states. From the series of experiments and computations, we observed good agreement between the experimental data and that generated by the computational model. In addition, the strain rate effect is examined for a more reliable prediction of plastic deformation. Therefore, the present computational model can predict the plastic deformation behavior (including time-dependent properties) of porous material subjected to uni-axial compression and indentation loadings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.