Abstract

Echinostomes are important intestinal foodborne parasites. Despite their significance as pathogens, characterization of the molecular biology and phylogenetics of these parasites are limited. In the present study, we determined the entire mitochondrial (mt) genome of the echinostome Echinostoma miyagawai (Hunan isolate) and examined the phylogenetic relationship with selected members of the suborder Echinostomata. The complete mt genome of E. miyagawai (Hunan isolate) was 14,468bp in size. This circular mt genome contained 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. The gene order and genomic content were identical with its congeners. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) based on the concatenated amino acid sequences of 12 protein-coding genes strongly supported monophyly for the genus Echinostoma; however, they rejected monophyly for the family Echinostomatidae and the genus Fasciola. The mt genomic data described in this study provides useful genetic markers for studying the population genetics, molecular biology, and phylogenetics of these echinostomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call