Abstract

To characterize the cellular effects and mechanism of arsenic trioxide (ATO)-induced hepatotoxicity in broiler chickens, increasing concentrations of ATO (0, 0.6, 1.2, 2.4, and 4.8 μM) were added to chicken hepatocyte cultures in vitro. The changes in hepatocyte morphology, oxidative stress and apoptosis were evaluated using fluorescence microscopy and flow cytometry. The effects of ATO on mRNA or protein expression of antioxidant enzymes, especially methionine sulfoxide reductase (Msr), were analyzed using qRT-PCR and western blotting assays. Increased apoptosis were concomitant with increased reactive oxygen species (ROS) accumulation and upregulation of antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) with increasing ATO concentrations. Moreover, G1 phase arrest and dysregulation of the balance between antiapoptotic versus proapoptotic factors were noted. Furthermore, upregulation of HO-1, SOD-1, and TRX in the ATO groups were consistent with ATO-induced oxidative damage. High Msr, SOD-1, TRX, Bak1, Bax, and p53 protein levels in the ATO groups indicate that these proteins may have accumulated to counter ATO-induced oxidative stress. ROS scavenger N-acetyl-l-cysteine (NAC) could reverse ATO-induced oxidative damage and restore hepatocyte viability, even with compromised Msr function. Our findings suggest that Msr can protect broiler hepatocytes against ATO-induced oxidative stress. Furthermore, NAC-mediated reversal of oxidative damage may represent a strategy to mitigate potential economic losses associated with arsenic poisoning in the poultry industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call