Abstract
The ascomycete Botrytis cinerea is a destructive and ubiquitous plant pathogen and represents a model organism for the study of necrotrophic fungal pathogens. Higher fungi possess a complex and dynamic multilayer cell wall involved in crucial aspects of fungal development, growth and pathogenicity. Plant resistance to microbial pathogens is determined often by the capacity of the plant to recognize molecular patterns associated with the surface of an interacting microbe. Here we report the chemical characterization of cell walls from B. cinerea during axenic growth. Neutral sugars and proteins constituted most of the mass of the B. cinerea cell walls, although chitin and uronic acids were detected. Glucose was the most abundant neutral sugar, but arabinose, galactose, xylose and mannose also were present. Changes in cell wall composition during culture were observed. As the culture developed, protein levels declined, while chitin and neutral sugars increased. Growth of B. cinerea was associated with a remarkable decline in the fraction of its cell wall material that was soluble in hot alkali. These results suggest that the cell wall of B. cinerea undergoes significant modifications during growth, possibly becoming more extensively covalently cross-linked, as a result of aging of mycelia or in response to decreasing nutrient supply or as a consequence of increasing culture density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.