Abstract

Inactivation of ccpA in Enterococcus faecalis leads to reduction of the growth rate, derepression of the galKETR operon in the presence of a mixture of glucose and galactose, and reduction of transcription of ldh in the presence of glucose. Moreover, the E. faecalis ccpA gene fully complements a Bacillus subtilis ccpA mutant, arguing for similar functions of these two homologous proteins. Protein comparison on two-dimensional gels from the wild-type cells and the ccpA mutant cells revealed a pleiotropic effect of the mutation on gene expression. The HPr protein of the carbohydrate-phosphotransferase system was identified by microsequencing, and a modification of its phosphorylation state was observed between the wild-type and the mutant strains. Moreover, at least 16 polypeptides are overexpressed in the mutant, and 6 are repressed. Interestingly, 13 of the 16 polypeptides whose synthesis is enhanced in the mutant were also identified as glucose starvation proteins. The N-terminal amino acid sequences of four of them match sequences deduced from genes coding for L-serine dehydratase, dihydroxyacetone kinase (two genes), and a protein of unknown function from Deinococcus radiodurans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call