Abstract

We have investigated the organization and expression of the Caulobacter crescentus flbF gene because it occupies a high level in the flagellar gene regulatory hierarchy. The nucleotide sequence comprising the 3' end of the flaO operon and the adjacent flbF promoter and structural gene was determined, and the organization of transcription units within this sequence was investigated. We located the 3' ends of the flaO operon transcript by using a nuclease S1 protection assay, and the 5' end of the flbF transcript was precisely mapped by primer extension analysis. The nucleotide sequence upstream from the 5' end of the flbF transcript contains -10 and -35 elements similar to those found in promoters transcribed by sigma 28 RNA polymerase in other organisms. Mutations that changed nucleotides in the -10 or -35 elements or altered their relative spacing resulted in undetectable levels of flbF transcript, demonstrating that these sequences contain nucleotides essential for promoter function. We identified a 700-codon open reading frame, downstream from the flbF promoter region, that was predicted to be the flbF structural gene. The amino-terminal half of the FlbF amino acid sequence contains eight hydrophobic regions predicted to be membrane-spanning segments, suggesting that the FlbF protein may be an integral membrane protein. The FlbF amino acid sequence is very similar to that of a transcriptional regulatory protein called LcrD that is encoded in the highly conserved low-calcium-response region of virulence plasmid pYVO3 in Yersinia enterocolitica (A.-M. Viitanen, P. Toivanen, and M. Skurnik, J. Bacteriol. 172:3152-3162, 1990).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.