Abstract

The intentional breakup of Fengyun-1C on 11 January 2007 created the most severe orbital debris cloud in history. The altitude where the event occurred was probably the worst location for a major breakup in the low Earth orbit (LEO) region, since it was already highly populated with operational satellites and debris generated from previous breakups. The addition of so many fragments not only poses a realistic threat to operational satellites in the region, but also increases the instability (i.e., collision cascade effect) of the debris population there. Detailed analysis of the large Fengyun-1C fragments indicates that their size and area-to-mass ratio (A/M) distributions are very different from those of other known events. About half of the fragments appear to be composed of light-weight materials and more than 100 of them have A/M values exceeding 1 m 2/kg, consistent with thermal blanket and solar panel pieces. In addition, the orbital elements of the fragments suggest non-trivial velocity gain by the fragment cloud during the impact. These important characteristics were incorporated into numerical simulations to assess the long-term impact of the Fengyun-1C fragments to the LEO debris environment. The collision probabilities between the Fengyun-1C fragments and the rest of the catalog population and the population growth in the low Earth orbit region in the next 100 years are summarized in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call