Abstract
To elucidate the possible biosynthetic pathway of a precursor UDP-glucose of the sphingan WL gum produced by Sphingomonas sp. WG, two enzymes phosphoglucomutase (PGM) and UDP-glucose pyrophosphorylase (UGPase) were bioinformatically analysed, expressed in Escherichia coli BL21 (DE3) and characterized. PGM was in the phosphoglucomutase/phosphomannomutase subclass and UGPase was predicted to be a UDP-glucose pyrophosphatase in a tetrameric structure. Both enzymes were expressed in soluble form, purified to near homogeneity with high activity at 1159 and 796 U/mg, exhibited folding with reasonable secondary structures, and existed as monomer and tetramer, respectively. The optimal pH and temperature of PGM were 9.0 and 50 °C, respectively, and this protein was stable at pH 8.0 and at temperatures ranging from 40 to 50 °C. The optimal pH and temperature of UGPase were 9.0 and 45 °C, respectively, and the protein was stable at pH 8.0 and at temperatures ranging from 30 to 55 °C. A small-scale one-pot biosynthesis of UDP-glucose by combining PGM and UGPase using glucose-6-phosphate and UTP as substrates was also performed, and formation of UDP-glucose was observed by HPLC detection, which confirmed the biosynthetic pathway of UDP-glucose in vitro. PGM and UGPase will be ideal targets for the metabolic engineering to improve WL gum yields in industrial production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.