Abstract

The whole cell biological conversion of naphthalene to (+)- cis-(1 R,2 S)-dihydroxy-1,2-dihydronaphthalene by the E. coli JM109(pPS1778) recombinant strain carrying the naphthalene dioxygenase and regulatory genes cloned from Pseudomonas fluorescens N3 in micellar systems has been investigated using biochemical and chemico-physical techniques. Reverse and direct micellar systems have been tested. Non-ionic surfactants (Tween and Triton X series) were found not to inhibit either the growth of the bacteria and the expression of the hydroxylating dioxygenase enzyme in such systems and were utilized in order to speed up the naphthalene conversion by increasing its solubility and also its bioavailability. The phase behavior of the direct micellar system was characterized through light scattering and other chemico-physical techniques. Further addition of isopropyl-palmitate 1–2% v/v to the micellar systems resulted in an increase of the apparent substrate concentration in solution and particularly its bioavailability thus allowing faster catalytic conversions resulting in an increase in productivity for the process. Since the cis-dihydrodiols are acquiring considerable potential as chiral pool synthons in asymmetric synthesis for a variety of industrial processes, possible applications for efficient small and large-scale production of such compounds are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.