Abstract

Streptomyces reticuli has an inducible ATP-dependent uptake system specific for cellobiose and cellotriose. By reversed genetics a gene cluster encoding components of a binding protein-dependent cellobiose and cellotriose ABC transporter was cloned and sequenced. The deduced gene products comprise a regulatory protein (CebR), a cellobiose binding lipoprotein (CebE), two integral membrane proteins (CebF and CebG), and the NH2-terminal part of an intracellular beta-glucosidase (BglC). The gene for the ATP binding protein MsiK is not linked to the ceb operon. We have shown earlier that MsiK is part of two different ABC transport systems, one for maltose and one for cellobiose and cellotriose, in S. reticuli and Streptomyces lividans. Transcription of polycistronic cebEFG and bglC mRNAs is induced by cellobiose, whereas the cebR gene is transcribed independently. Immunological experiments showed that CebE is synthesized during growth with cellobiose and that MsiK is produced in the presence of several sugars at high or moderate levels. The described ABC transporter is the first one of its kind and is the only specific cellobiose/cellotriose uptake system of S. reticuli, since insertional inactivation of the cebE gene prevents high-affinity uptake of cellobiose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.