Abstract

The potency of two novel glycine site antagonists, GV150,526A and GV196,771A, was assessed by their ability to inhibit the binding of [(3)H]-MDL105,519 to cell homogenates prepared from mammalian cells transfected with either NR1-1a, NR1-2a, NR1-1a/NR2A, NR1-1a/NR2B, NR1-1a/NR2C or NR1-1a/NR2D NMDA receptor clones. The inhibition constants (K(i)s) for GV150,526A displacement of [(3)H]-MDL105,519 binding to either NR1-1a or NR1-2a expressed alone were not significantly different and were best fit by a one-site binding model. GV150,526A inhibition to NR1-1a/NR2 combinations was best fit by a two-site model with the NR1-1a/NR2C having an approximate 2 - 4 fold lower affinity compared to other NR1-1a/NR2 receptors. The K(i)s for GV196,771A displacement of [(3)H]-MDL105,519 binding to NR1-1a, NR1-2a and all NR1-1a/NR2 combinations was best fit by a two-site binding model. There was no significant difference between the K(i)s for the binding to NR1-1a and NR1-2a; NR1-1a/NR2A receptors had an approximate 4 fold lower affinity for GV196,771A compared to other NR1-1a/NR2 combinations. The K(i)s for both GV150, 526A and GV196,771A for the inhibition of [(3)H]-MDL105,519 binding to membranes prepared from adult rat forebrain were determined and compared to the values obtained for binding to cloned NMDA receptors. The K(i)s for a series of glycine site ligands with diverse chemical structures were also determined for the inhibition of [(3)H]-MDL105,519 binding to NR1-1a/NR2A receptors. L689,560 displayed similar binding characteristics to GV150,526A. It is suggested that glycine site antagonists may be divided into two classes based on their ability to distinguish between NR1 and NR1/NR2 receptors with respect to binding curve characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.