Abstract

The magnitude of the activating effect of ATP on the Ca efflux was explored at different [Ca++]i in squid axons previously exposed to cyanide seawater and internally dialyzed with a medium free of ATP and containing p-trifluoro methoxy carbonyl cyanide phenyl hydrazine. At the lowest [Ca++]i used (0.06 micron more than 95% of the Ca efflux depends on ATP. At high [Ca++]i (100 micron), 50-60% of the Ca efflux still depends on ATP. The apparant affinity constant for ATP was not significantly affected in the range of [Ca++]i from 0.06 to 1 micron. Axons dialyzed to reduce their internal magnesium failed to show the usual activation of the Ca efflux when the Tris or the sodium salt of ATP was used. Only in the presence of internal magnesium is ATP able to stimulate the Ca efflux. Nine naturally occurring high-energy phosphate compounds were ineffective in supporting calcium efflux. These compounds were: UTP, GTP, CTP, UDP, CDP, ADP, AMP, CAMP, and acetyl phosphate. The compounds 2' deoxy-ATP and the hydrolyzable analog alpha,beta-methylene ATP were able to activate the Ca efflux. The nonhydrolyzable analog beta,gamma-methylene ATP competes with ATP for the activating site, but is unable to activate the Ca efflux. The results are discussed in terms of the specificity of the nucleotide site responsible for the ATP-dependent Ca efflux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.