Abstract
Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans widely distributed in plants. The Arabidopsis rat1 mutant, previously characterized as resistant to Agrobacterium tumefaciens root transformation, is due to a mutation in the gene for the Lys-rich AGP, AtAGP17. We show that the phenotype of rat1 correlates with down-regulation of AGP17 in the root as a result of a T-DNA insertion into the promoter of AGP17. Complementation of rat1 plants by a floral dip method with either the wild-type AGP17 gene or cDNA can restore the plant to a wild-type phenotype in several independent transformants. Based on changes in PR1 gene expression and a decrease in free salicylic acid levels upon Agrobacterium infection, we suggest mechanisms by which AGP17 allows Agrobacterium rapidly to reduce the systemic acquired resistance response during the infection process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.