Abstract

During hepatitis B virus (HBV) infection, HBV subviral particles (SVP) are produced in large excess in comparison to infectious virions and account for the major source of HBV surface antigen (HBsAg) in the blood. This abundant circulating HBsAg has been postulated to promote HBV chronicity by inducing immune exhaustion against HBsAg. Nucleic acid polymers (NAPs) such as REP 2139 display promising antiviral activity against both HBV and hepatitis Delta virus (HDV) in clinical trials. REP 2139 is accompanied by clearance of HBsAg from blood with concomitant reappearance of anti-HBsAg antibodies. To decipher the mechanism-of-action of NAPs, a recently developed cell-based assay in human HepG2.2.15 cells was used (Blanchet et al., 2019). This assay recapitulates the HBsAg secretion inhibition observed in treated patients. In the present study, we analysed the antiviral effect of REP 2139 on the HBV lifecycle. Importantly, we confirm here the potent inhibitory activity of the compound on HBsAg secretion, and report minor or no effect on other viral markers such as intracellular DNA and RNA, and HBeAg or Dane particle secretion. Notably, intracellular HBsAg accumulation is prevented by proteasomal and lysosomal degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.