Abstract

We study the Anderson metal-insulator transition for non ergodic random Schr\"odinger operators in both annealed and quenched regimes, based on a dynamical approach of localization, improving known results for ergodic operators into this more general setting. In the procedure, we reformulate the Bootstrap Multiscale Analysis of Germinet and Klein to fit the non ergodic setting. We obtain uniform Wegner Estimates needed to perform this adapted Multiscale Analysis in the case of Delone-Anderson type potentials, that is, Anderson potentials modeling aperiodic solids, where the impurities lie on a Delone set rather than a lattice, yielding a break of ergodicity. As an application we study the Landau operator with a Delone-Anderson potential and show the existence of a mobility edge between regions of dynamical localization and dynamical delocalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call