Abstract

Vicenistatin (1) is a potent polyketide antitumor antibiotic composed of a 20-membered macrolactam core appended to a unique aminosugar, vicenisamine. In this study, vicenistatin was isolated and its biosynthetic gene cluster identified from Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010. A set of five genes, vicC, vicD, vicE, vicF, and vicG, was confirmed to be involved in the biosynthesis of the aminosugar by gene inactivations. VicG was characterized as an N-methyltransferase that catalyzes the methylation of the 4'-amino group in the last step of the aminosugar biosynthetic pathway; the N-demethyl intermediate 4'-N-demethylvicenistatin (2) was isolated from the ΔvicG mutant strain. In addition, vicR1 was characterized as a positive pathway-specific regulatory gene. Notably, N-demethyl compound 2 was found to exert impressive antibacterial activities, with MIC values spanning 0.06-4 μg/mL, against a panel of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, Gram-negative Helicobacter pylori, and mycobacterium Mycobacterium smegmatis and the fungal pathogen Candida albicans. Compound 2 was also found to display reduced cytotoxicities relative to vicenistatin, especially against noncancerous human cell lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call