Abstract
Lupin is a nutritious, yet undervalued grain used as a fodder and food crop. In the present study, native lupin flour (LF), lupin protein concentrate (LPC), and lupin protein isolate (LPI) were combined (70% LPI:LPC blend ratios [30:70, 50:50, and 70:30] and 30% LF constant fraction), extruded at high moisture (45–55%), and shaped with a long cooling die (800 mm) to obtain texturized meat analogues (TMAs) with fibrous structures. The characteristics of TMAs (e.g., hardness, water hydration capacity) depended heavily on water content, blend ratios (LPI:LPC), and to a lesser extent, the long cooling die temperature. Color changes (i.e., L*, b*) were mostly attributed to variations in blend ratios (LPI:LPC). Microstructure analysis showed that TMAs with higher water content (55%) were more likely to have thinner walls and smaller void thickness. Fluorescence imagery revealed that TMAs with lower LPI content presented more homogeneous structures. These findings show that reasonable amounts (30% d.m.) of native lupin flour can be incorporated into meat analogues by maintaining a sufficiently high protein content (>50% d.m.) to trigger the formation of fibrous structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.