Abstract
Multidrug resistance (MDR) is one of the main obstacles in tumor chemotherapy. A promising approach to solving this problem is to utilize a nontoxic and potent modulator able to reverse MDR, which in combination with anticancer drugs increases the anticancer effect. Experiments were carried out to examine the potential of tetrandrine (Tet) as a MDR-reversing agent. Survival of cells incubated with Tet at 2.5 micromol/l for 72 h was over 90%. Tet at 2.5 micromol/l almost completely reversed resistance to vincristine (VCR) in KBv200 cells. Tet at a concentration as low as 0.625 micromol/l produced a 7.6-fold reversal of MDR, but showed no effect on the sensitivity of drug-sensitive KB cells in vitro. In the KBv200 cell xenograft model in nude mice, neither Tet nor VCR inhibited tumor growth. However, VCR and Tet combined inhibited tumor growth by 45.7%, 61.2% and 55.7% in three independent experimental settings. In the KB cell xenograft model in nude mice, Tet did not inhibit tumor growth, but VCR and the combination of VCR and Tet inhibited tumor growth by 40.6% and 41.6%, respectively. Mechanism studies showed that Tet inhibited [(3)H]azidopine photoaffinity labeling of P-gp and increased accumulation of VCR in MDR KBv200 cells in a concentration-dependent manner. The results suggest that Tet is a potent MDR-reversing agent in vitro and in vivo. Its mechanism of action is via directly binding to P-gp and increasing intracellular VCR accumulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.