Abstract

AbstractCellulose nanofiber (CNFs) obtained through TEMPO oxidation was structurally characterized using FT-IR (Fourier Transformed Infrared) and SEM (Scanning Electron Microscopy) spectroscopy. The molecular aggregation and spectroscopic properties of Rhodamine B (Rh-B) in CNFs suspension were investigated using molecular absorption and steady-state fluorescence spectroscopy techniques. The interaction between CNFs particles in the aqueous suspension and the cationic dye compound was examined in comparison to its behavior in deionized water. This interaction led to significant changes in the spectral features of Rh-B, resulting in an increase in the presence of H-dimer and H-aggregate in CNFs suspension. The H-type aggregates of Rh-B in CNFs suspensions were defined by the observation of a blue-shifted absorption band compared to that of the monomer. Even at diluted dye concentrations, the formation of Rh-B’s H-aggregate was observed in CNFs suspension. The pronounced aggregation in suspensions originated from the strong interaction between negatively charged carboxylate ions and the dye. The aggregation behavior was discussed with deconvoluted absorption spectra. Fluorescence spectroscopy studies revealed a significant reduction in the fluorescence intensity of the dye in CNFs suspension due to H-aggregates. Furthermore, the presence of H-aggregates in the suspensions caused a decrease in the quantum yield of Rh-B compared to that in deionized water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.