Abstract

Leak K+ currents are mediated by two-pore domain K+ (K2P) channels and are involved in controlling neuronal excitability. Of 15 members of K2P channels cloned so far, TRAAK, TREK-1, and TREK-2 are temperature sensitive. In the present study, we show that strong immunoreactivity of TRAAK, TREK-1 and TREK-2 channels was present mainly in small-sized dorsal root ganglion (DRG) neurons of rats. The percentages of neurons with strong immunoreactivity of TRAAK, TREK-1 and TREK-2 channels were 27, 23, and 20%, respectively. Patch-clamp recordings were performed to examine isolated leak K+ currents on acutely dissociated small-sized rat DRG neurons at room temperature of 22 °C, cool temperature of 14 °C and warm temperature of 30 °C. In majority of small-sized DRG neurons recorded (76%), large leak K+ currents were observed at 22 °C and were inhibited at 14 °C and potentiated at 30 °C, suggesting the presence of temperature-sensitive K2P channels in these neurons. In a small population (18%) of small-sized DRG neurons, cool temperature of 14 °C evoked a conductance which was consistent with TRPM8 channel activation in cold-sensing DRG neurons. In these DRG neurons, leak K+ currents were very small at 22 °C and were not potentiated at 30 °C, suggesting that few temperature-sensitive K2P channels was present in cold-sensing DRG neurons. For DRG neurons with temperature-sensitive leak K+ currents, riluzole, norfluoxetine and prostaglandin F2α (PGE2α) inhibited the leak K+ currents at both 30 °C and 22 °C degree, and did not have inhibitory effects at 14 °C. Collectively, the observed temperature-sensitive leak K+ currents are consistent with the expression of temperature-sensitive K2P channels in small-sized DRG neurons.

Highlights

  • Two-pore domain K+ channels (K2P) channel is a family of 15 members that form what is known as “leak K+ channels” [8, 10, 18]

  • Medium- to large-sized lumbar 5 (L5) dorsal root ganglion (DRG) neurons were shown to be negative of TREK-2-ir

  • A previous study suggested that TREK-2 channel is a major leak K+ channels in DRG neurons [14]

Read more

Summary

Introduction

K2P channel is a family of 15 members that form what is known as “leak K+ channels” [8, 10, 18]. Of the 15 K2P subtypes, TRAAK, TREK-1, and TREK-2 are 3 subtypes highly relevant to sensory functions due to their high mechanical and thermal sensitivity. These three channels are termed mechanothermal K2P channels or thermal K2P channels [8, 13, 20]. Thermal K2P channels are highly sensitivity to lipids including arachidonic acid [9, 16], polyunsaturated fatty acids, and lysophospholipids [8], and to intracellular and extracellular pH [4, 16, 21]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call