Abstract
Akabane virus (AKAV) of the genus Orthobunyavirus in the family Bunyaviridae is an important animal pathogen; however, studies on AKAV biology are scarce. Therefore, we generated temperature-sensitive (ts) mutants of AKAV in order to study its pathogenesis. The ts AKAV mutants were generated by incubating the virulent OBE-1 strain with the chemical mutagen 5-fluorouracil. Each ts mutant was inoculated intracerebrally into mice to assess its virulence, and the genomic sequences of the attenuated mutants were also determined. Three of the twelve ts mutants studied showed a mortality rate of less than 10%. Although no mutation was detected in the S RNA segment of these three mutants, amino acid substitutions were observed in both the M and L RNA segments. Three of the mutants and the wild-type virus demonstrated a similar pattern of immunoreactivity in an ELISA with anti-Gc monoclonal antibodies. On the other hand, using a minireplicon system, the level of L protein activity of each ts mutant decreased as the temperature increased. These results suggest that the L RNA segment could be involved in the virulence of AKAV, which increases our understanding of how the viral gene products contribute to pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.