Abstract

Subversion of the host cell cytoskeleton is the hallmark of enterohaemorrhagic Escherichia coli (EHEC) infection. EHEC translocates the trans-membrane receptor protein Tir (translocated intimin receptor), which links the extracellular bacterium to the eukaryotic cell actin cytoskeleton, triggering formation of actin-rich pedestals beneath adherent bacteria. Tir-mediated actin accretion by EHEC requires TccP (Tir cytoskeleton coupling protein), a recently discovered type III secretion system effector protein which, following translocation, binds and activates Wiskott-Aldrich syndrome protein (N-WASP), which in turn activates the actin-related protein 2/3 complex leading to localized polymerization of actin. In this study, truncated N-WASP and TccP derivatives were generated and tested in in vitro actin polymerization and epithelial cell infection assays. The C-terminal amino acids 253-276 of the GTPase binding domain (GBD) of N-WASP were identified as essential, although not sufficient, for TccP:N-WASP protein:protein interaction, TccP-mediated N-WASP activation and induction of actin polymerization. TccP from EHEC O157:H7 strain EDL933 consists of a unique N-terminal domain and six proline-rich repeats. Progressive deletions within the N-terminus of TccP revealed that residues 1-21 are necessary and sufficient for its translocation, while amino acids 1-181, encompassing the N-terminal translocation signal and two proline-rich repeats, are sufficient for triggering actin polymerization in EHEC-infected epithelial cells and in in vitro actin polymerization assays. This study defines the modular domain structure of TccP and the molecular basis of TccP-mediated N-WASP activation and EHEC-induced remodelling of the host actin cytoskeleton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.