Abstract

The conjugation of peptides derived from the HIV TAT protein to membrane-impermeant molecules has gained wide acceptance as a means for intracellular delivery. Numerous studies have addressed the mechanism of uptake and kinetics of TAT translocation, but the cytosolic concentrations and bioavailability of the transported cargo have not been well-characterized. The current paper utilizes a microanalytical assay to perform quantitative single-cell measurements of the concentration and accessibility of peptide-based substrates for protein kinase B (PKB) and Ca(2+)/calmodulin-activated kinase II. The substrate peptide and TAT were conjugated through a releasable linker, either a disulfide or photolabile bond. Free substrate peptide concentrations of approximately 10(-20)-10(-18) moles were attainable in a cell when substrates were delivered utilizing these conjugates. The substrate peptides delivered as a disulfide conjugate were often present in the cytosol as several oxidized forms. Brief exposure of cells loaded with the photolabile conjugates to UVA light released free substrate peptide into the cytosol. Substrate peptide delivered by either conjugate was accessible to cytosolic kinase as demonstrated by the efficient phosphorylation of the peptide when the appropriate kinase was active. After incubation of the conjugated substrate with cells, free, kinase-accessible substrate was detectable in less than 30 min. Release of the majority of loaded substrate peptide from sequestered organelles occurred within 1 h. The utility of the photocleavable conjugates was demonstrated by measuring the activation of PKB in 3T3 cells after addition of varying concentrations of platelet-derived growth factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call