Abstract

Clinopyroxenes of the solid solution series hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) were synthesized at temperatures of 825–1200°C and pressures of 0.5–2.5 GPa. Compositions were determined by electron microprobe analysis. Selected crystals were investigated by means of single crystal diffraction and structure refinement and the structural distortion was studied depending on the substitution of iron by zinc on the octahedral M1 site. It is shown that the coordination of the M1 site has the most significant effect on M–O bond lengths, with changes on the other sites accommodating this distortion. The mean quadratic elongation and the octahedral angle variance as quantitative measures of the distortion of the coordination polyhedron were correlated with former results of 57Fe Mossbauer spectroscopy at 298 K. The results presented now complete an earlier work on synthetic, crystalline powders of the same material and deliver exact structural data that were not possible to obtain by Rietveld refinements on powder data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.