Abstract
The binding of synapsin I, a synaptic vesicle-associated phosphoprotein, to small synaptic vesicles has been examined. For this study, synapsin I was purified under nondenaturing conditions from rat brain, using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and characterized. Small synaptic vesicles were purified from rat neocortex by controlled pore glass chromatography as the last purification step, and binding was characterized at an ionic strength equivalent to 40 mM NaCl. After removal of endogenous synapsin I, exogenous dephospho-synapsin I bound with high affinity (Kd, 10 +/- 6 nM) to synaptic vesicles. The binding saturated at 76 +/- 40 micrograms synapsin I/mg of vesicle protein, which corresponded to the amount found endogenously in purified vesicles. Synapsin I binding exhibited a broad pH optimum around pH 7. Other basic proteins, specifically myelin basic protein and histone H2b, did not compete with synapsin I for binding to vesicles. Other membranes purified from rat brain and membranes derived from human erythrocytes did not show the high affinity binding site for synapsin I found in vesicles. The binding of three different forms of phosphosynapsin I to vesicles was investigated. Synapsin I, phosphorylated at sites 2 and 3 by purified calcium/calmodulin-dependent protein kinase II, bound with a 5-fold lower affinity to the vesicles than did dephospho-synapsin I. In contrast, synapsin I, phosphorylated at site 1 by purified catalytic subunit of cAMP-dependent protein kinase, bound with an affinity close to that of dephospho-synapsin I. Synapsin I phosphorylated on all three sites bound to the vesicles with an affinity comparable to that of synapsin I phosphorylated on sites 2 and 3. Under conditions of higher ionic strength (150 mM NaCl equivalent), synapsin I bound with a 5-fold lower affinity to vesicles, and no effect of phosphorylation on binding was observed under these conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.