Abstract

The aim of this study was to qualitatively and quantitatively characterize the optic surface topography of unworn hydrogel contact lenses (CLs) using atomic force microscopy (AFM) analysis and methods of modern metrology. The CLs used in this study were vifilcon A (Focus® Monthly Toric Visitint® model, CIBA Vision Corp.). AFM analysis was performed in Tapping Mode™ in an aqueous environment. The surface roughness analysis was based on six quantitative statistical parameters: arithmetic mean deviation of the surface (Sa), root mean square deviation of the surface (Sq), skewness of the topography height distribution (Ssk), kurtosis of the topography height distribution (Sku), 10-point average of the absolute heights (Sz), and vertical distance between highest peak and lowest surface point (St). These parameters were determined across different square areas (1, 4, 9, 16, and 25 μm2). The surface roughness parameter values were found to be dependent on the examined surface area. The values of Sa, Sq,|Ssk|, Sz, and St parameters increase with the increasing size of the scanning area, an opposite effect of that observed for the Sku parameter values. The proposed methodology might potentially have implications for the future testing of contact lens hydrophilic polymers. POLYM. ENG. SCI., 53:2141–2150, 2013. © 2013 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.