Abstract

In the framework of high-power lasers, surface defects on optics can generate strong light intensification and induce damage sites on downstream optics. To evaluate this intensification during high-energy laser shots, a three-step method is proposed. First, a dedicated measurement bench is designed to measure the intensification induced by defects on a wide variety of optics, including amplifier slabs, KDP crystals, mirrors, gratings, and vacuum windows, for propagation distances up to 2000 mm. A multi-resolution single-beam multiple-intensity reconstruction phase retrieval algorithm is then used to reconstruct a model of the defect, in both amplitude and phase, from a set of intensification measurements. Finally, the impact of the modeled defect on downstream optics is evaluated with a simulation of the high-power laser system. This method is experimentally validated through a case study of damage identified on one of the Laser Mégajoule (LMJ) beams, characterized with the method presented in this paper. The long-distance impact on the LMJ beam is estimated by simulation and compared to a direct near-field measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.