Abstract

In this paper, we report nano-electrospray ionization-ion mobility mass spectrometry (nano-ESI-IM-MS) characterization of bovine superoxide dismutase (SOD-1) and human SOD-1 purified from erythrocytes. SOD-1 aggregates are characteristic of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease in humans that could be triggered by dissociation of the native dimeric enzyme (Cu(2),Zn(2)-dimer SOD-1). In contrast to ESI-MS, nano-ESI-IM-MS allowed an extra dimension for ion separation, yielding three-way mass spectra (drift time, mass-to-charge ratio and intensity). Drift time provided valuable structural information related to ion size, which proved useful to differentiate between the dimeric and monomeric forms of SOD-1 under non denaturing conditions. In order to obtain detailed structural information, including the most relevant post-translational modifications, we evaluated several parameters of the IM method, such as sample composition (10 mM ammonium acetate, pH 7) and activation voltages (trap collision energy and cone voltage). Neutral pH and a careful selection of the most appropriate activation voltages were necessary to minimize dimer dissociation, although human enzyme resulted less prone to dissociation. Under optimum conditions, a comparison between monomer-to-dimer abundance ratios of two small sets of blood samples from healthy control and ALS patients demonstrated the presence of a higher relative abundance of Cu,Zn-monomer SOD-1 in patient samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.