Abstract
BackgroundBiogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones.ResultsThe SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10–87 mmol/L after 6–21 days of incubation (final pH 1.0–2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation.ConclusionsThe presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.
Highlights
Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters
To better understand concrete and BSA corrosion in sludge digesters, this study identified BSA-related bacteria and evaluated their corrosion potential
Enriched sulfide oxidizing bacteria (SOB) cultures The highest SOB diversities were obtained in Thiobacillus medium and DSMZ medium 68
Summary
Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. Microbial deterioration of concrete by biogenic sulfuric acid (BSA) is a serious and common problem in wastewater treatment facilities. BSA corrosion is a multistage process of sulfur/sulfate reducing (SRB) and sulfur/sulfide oxidizing bacteria (SOB). The first, anaerobic, step occurs when SRB reduce sulfate and other oxidized sulfur compounds to hydrogen sulfide (H2S). H2S, CO2 and other gases with acidic properties abiotically decrease the pH to values around 9.0 enabling the colonization of neutrophilic sulfur oxidizing bacteria (NSOB) such as Thiobacillus spp. and Thiomonas spp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.