Abstract
We constructed a bench-scale up-flow anaerobic sludge reactor to systematically investigate the physicochemical characteristics of sulfate-reducing bacteria (SRB) anaerobic granular sludge and evaluate the granular size by a grey relational analysis. Results indicated that the granulation proportion was improved from 17.9% to 68.7% with the sulfate reduction efficiency larger than 90% under gradually shortened hydraulic retention time (HRT) and increased organic loading. Larger SRB granule sludge showed a higher specific gravity and settling velocity. The seed sludge was negatively charged, and the surface charge decreased with the incremental granular diameter. The maximal hydrophobicity and granulation proportion were 69.9% and 42.4%, respectively, for the granular diameter ranging from 1.5 to 2.5 mm. Extracellular polymeric substance (EPS) of the sludge exhibited the highest ratio of protein to polysaccharide (PN/PS) for the granular diameter in the range of 0.5 to 1.5mm. Based on the grey relational analysis of the SRB anaerobic sludge granulation, the correlation degree of the inherent influencing factors was PN/PS>surface charge> hydrophobicity. The theoretical evaluation would be conducive to granulation control during the potential application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.