Abstract
The size distribution within and electrokinetic properties of aqueous perovskite (LaCoO3) suspensions, have been characterized as a function of processing conditions. Submicron–sized perovskite particles have been obtained using a cavitation technique in which the suspension is passed through a series of small orifices under extreme driving pressure drops. When no additives were used, the zeta potential of the particles was found to be positive over the entire pH range studied. Use of an acrylic copolymer surfactant with multiple negatively charged sites during the cavitation processing was found to improve dispersion stability. The observed variations in zeta potential and particle size for the suspensions are explained in terms of electrostatic interactions between particles, the tendency for the surfactant to adsorb onto the particles, and the degree of steric stabilization provided by the surfactant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.