Abstract

The significance of timing jitter stems from its pivotal role in enhancing the precision of applications like spectroscopy and frequency metrology. In this study, we introduce a comprehensive procedure for achieving low timing jitter values in mode-locked fiber laser systems, highlighting dispersion, intracavity pulse energy, pulse length, and spectral bandwidth as key parameters. Notably, we unveil the influence of fiber amplifier pump power on jitter, a factor neglected in established theories and recent experiments. Applying this procedure to a 200-MHz all-polarization-maintaining (PM) erbium-doped (Er:) nonlinear amplifying loop mirror (NALM) fiber laser system, we demonstrate an exceptionally low timing jitter of 14.25 attoseconds, measured using the balanced optical cross-correlation (BOC) technique and integrated from 10 kHz to 4 MHz. The implementation of our novel method offers the opportunity to improve jitter results in various fiber laser systems and increase the accuracy of fiber laser applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call