Abstract

Cbf-14 (RLLRKFFRKLKKSV), a designed antimicrobial peptide derived from the cathelicidin family, is effective against drug-resistant bacteria. Structurally related peptide impurities in peptide medicines probably have side effects or even toxicity, thus impurity profiling research during the entire production process is indispensable. In this study, a simple liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method using a quadrupole time-of-flight (Q-TOF) mass spectrometer was developed for separation, identification, and characterization of structurally related peptide impurities in Cbf-14. A total of one process-related impurity and thirty-two degradation products were identified, and seven of them have been synthesized and confirmed. These impurities have not been declared in custom synthetic peptides. The degradation products were divided into five categories: fifteen Cbf-14 hydrolysates, five Cbf-14 isomers, four acetyl-Cbf-14 isomers, two aldimine derivatives, and six oxidized impurities. Combined with the peptide synthesis and the stress-testing studies, the origins and the formation mechanisms of these impurities were elucidated, which provides a unique insight for the follow-up quality study of Cbf-14 and other peptide products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.