Abstract

A new variant of the nonlinear kinematic hardening model is proposed which accommodates both nonlinear and linear strain hardening during initial tensile loading and reduced elastic modulus during initial load reversal. It also incorporates the Bauschinger effect, as a function of prior tensile plastic strain, during the nonlinear compressive loading phase. The model is shown to fit experimental data from a total of five candidate gun steels. The numerical fits will be employed in subsequent work to predict residual stresses and fatigue lifetimes for autofrettaged tubes manufactured from the candidate steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.