Abstract
Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vorticity function on the surface, while the criterion is related to the total negativity of this antiderivative. It turns out that given topology of the vorticity function, the set of coadjoint orbits of the symplectomorphism group admitting steady flows with this topology forms a convex polytope. As a byproduct of the proposed construction, we also describe a complete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies which, along with circulations, form a complete set of invariants for coadjoint orbits of area-preserving diffeomorphisms on a surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.