Abstract

AbstractTitanium nitride (TiN) is a candidate material for hard and wear resistant coatings on metallic substrates such as titanium (Ti), stainless steel and aluminum. Coating processes include chemical vapor deposition, ion implantation, plasma and thermal nitriding under vacuum and controlled environments. The motivation for the present research is to develop a laser plasma process for high rate formation of TiN coatings on Ti substrates at near-atmospheric pressures. Laser induced plasma generated by a pulsed CO2 laser was used to excite a Ti substrate. The species in the vapor plume were characterized by optical emission spectroscopy. Spatially and temporally resolved spectral characterization was performed as a function of laser power, position of the substrate relative to the focal plane, pulse parameters, and shielding gases. These experiments are a first step in understanding laser assisted plasma deposition of nitride/oxy-nitride coatings on titanium metal under atmospheric conditions. Results indicate a window of optimal process parameters for developing titanium nitride coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call