Abstract

AbstractIrradiation of ultrasonic waves induces cavitation in a solution, and a chemical action instigated by radicals occurs. This chemical action is reported to be most efficient in the region of several hundred kilohertz frequencies. Application of sonochemistry based on ultrasonic chemical action remains at the laboratory scale and has not yet reached the industrial practical scale. In order to realize practical applications of sonochemistry, there is a need to scale‐up the sonochemical reactors. For this purpose, we used a 490‐kHz cylindrical sonochemical reactor that is long in the irradiation direction, and used potassium iodide (KI) dosimetry, sonochemical luminescence, and calorimetry to evaluate the sonochemical reaction efficiency and reaction field of the reactor. We performed the evaluation with the ultrasonic irradiation direction in the horizontal and vertical directions. As a result, we observed sonochemical luminescence and a rise in temperature near the reflection surface, for both the horizontal and vertical irradiation. For the horizontal irradiation, the I3− concentration was evenly distributed in the irradiation direction. Moreover, we found that the sonochemical reaction efficiency was the same for both the horizontal irradiation and the vertical irradiation. © 2007 Wiley Periodicals, Inc. Electron Comm Jpn Pt 3, 90(8): 1– 8, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ecjc.20315

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.