Abstract

BackgroundVascular invasion is an independent risk factors for recurrence and poor prognosis in patients with hepatocellular carcinoma (HCC). However, the molecular mechanisms of HCC vascular invasion are largely unknown. Deciphering the molecular changes associated with the vascular invasion process will aid in the identification of therapeutic targets and treatment for patients with HCC.MethodsDNA was extracted from tumor specimens and blood samples collected from 50 patients with HCC. Next-generation sequencing (NGS) was performed to detect HCC gene variants. Bioinformatics methods were used to comprehensively analyze the three sets of sequencing data grouped by vascular invasion, including differences in tumor mutation burden (TMB), mutation characteristics, and alterations in signaling pathways.ResultsBioinformatics analysis detected a total of 762 single nucleotide variants (SNVs). The TMB was not significantly different between patients with macrovascular invasion, microvascular invasion (MVI), or avascular invasion. Ten genes related to prognosis or recurrence, and one oncogene related to vascular invasion were screened. Compared with the avascular invasion cluster, the variant genes in the macrovascular and MVI clusters were mainly enriched in the thyroid hormone signaling pathway. In addition, macrovascular invasion variant genes were also enriched in the insulin signaling pathway and the Fanconi anemia pathway.ConclusionsSomatic mutations and pathway changes associated with vascular invasion in HCC were identified. The discovery of the molecular drivers of vascular invasion in HCC provides novel insights that can help guide further patient diagnosis and personalized therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call