Abstract

Microwave (MW) irradiation and conventional heating (CH) at 96 °C was successful in disrupting the complex waste activated sludge (WAS) floc structure and releasing extra- and intra-cellular biopolymers, such as protein and sugars from activated sludge flocs into soluble phase along with solubilization of particulate chemical oxygen demand (COD). Soluble CODs of CH and MW-irradiated WAS were 361±45% and 143±34% higher and resulted in 475±3% and 211±2% higher cumulative biogas productions (CBP) relative to the control at the end of 23 days of mesophilic anaerobic digestion, respectively. Ultrafiltration (UF) was used to characterize the soluble molecular weight (Mw) distributions of control (unpretreated), CH and MW-irradiated WAS. Depending on the Mw fraction, the range of substrate volumetric utilization rate increases from anaerobic digesters was between 94% and 84% for CH and 26–113% for MW compared to the control for the first nine days of the digestion. Digesters treating high Mw (>300 kDa) materials resulted in smaller biodegradation rate constants, k, indicating that microorganisms require a longer time to utilize high Mw fractions which are most likely cell wall fragments and exopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.