Abstract

Water resources are under increasing pressure from ever-increasing demand from industry and society. However, water is a limited resource that must be sustainable and protected. This problem is highlighted in desert areas, where water quality and abundance are scarce. Solar-powered water treatment systems are an inexpensive solution to ensure water quality for human consumption. This research analyzes solar ultraviolet radiation (UVR) in three populated Chilean cities to study the potential feasibility of the solar-powered photo-Fenton process for wastewater remediation. To generate long-term UVR values, satellite and reanalysis data and the Radiative Transfer Model were used. Results show high daily levels of solar ultraviolet irradiation, 1299.95kJm−2 for Antofagasta. The shortest treatment time for summer operation was observed in Santiago (21 min), followed by Antofagasta (34 min), and Concepción (35 min). Santiago presented the lowest volume of photoreactors during the summer (297 L) and Antofagasta during the winter (1589 L). This is the first preliminary analysis showing the possibilities of exploiting the potential of UVR in Chilean cities to provide tools for integrating water treatment technologies. This research motivates further studies on spectral radiation and emerging advanced oxidation technologies and the development of prospects for water and wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.