Abstract

Former battery factories have created environmental and health problems for years and the exposure to lead in surface soils has been underestimated. Nonetheless, the identification of lead contamination and its spatial distribution is crucial. The determination of heavy metals in soils can be performed using inductively coupled plasma mass spectrometry (ICP-MS). However, alternative techniques such as X-ray fluorescence (XRF) have been used lately in environmental studies since measurements can be taken in the field in a prompt manner, despite its lower accuracy. In this study, a former battery factory site in Monterrey, Mexico, has been studied in order to detect lead contamination. Soil samples were assessed for contamination by using an analytical hybrid method that comprises both analytical techniques, namely, ICP-MS and XRF. Samples were taken in 215 locations and, after a simple homogenization process, they were analyzed by using a portable XRF device. Within those 215 sampling points, 25 samples were analyzed concurrently by using ICP-MS according to international sampling guidelines. Results obtained were adjusted in order to define an analytical hybrid method, which encompasses the advantages of each technique. An improved characterization was achieved by using the proposed analytical hybrid method since maps of lead distribution and calculated areas of concern showed better predictability. The combination of spectroscopic techniques is of great applicability for environmental agencies and decision makers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call