Abstract

A series of SnTe layers with thicknesses varying from 0.42 to 9.1 µm were grown by molecular beam epitaxy on (111) BaF2 substrates. The SnTe lattice parameter was found to be 6.331 Å as determined from x-ray diffraction spectra measured in the triple-axis configuration. The FWHM of the (222) SnTe x-ray rocking curves indicated a good crystalline quality and an unusual dependence on layer thickness. Atomic force microscopy (AFM) of the SnTe surface revealed spirals with monolayer steps formed around threading dislocations, similar to the PbTe on BaF2 epitaxy. The dislocation density was estimated from the AFM picture to be 9x10(8) cm-2. Small black pits corresponding to holes that were left during growth were also observed on the AFM images. Sn diffusion can be a possible reason for these pits and the relatively high dislocation density. Electrical measurements showed that the SnTe epilayers present a typical p-type carrier concentration around 10(20) cm- 3 almost temperature independent and a Hall mobility which decreases from 10(4) to 10³ cm²/V.s as the temperature increases from 10 to 350K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.