Abstract

BackgroundAlthough several novel resistant breast cancer cell lines have been established, only a few resistant breast cancer cell lines overexpress breast cancer resistance proteins (BCRP). The aim of this study was to establish new resistant breast cancer cell lines overexpressing BCRP using SN38 (7-ethyl-10-hydroxycamptothecin), an active metabolite of irinotecan and was to discover genes and mechanisms associated with multidrug resistance.MethodsSN38-resistant T47D breast cancer cell sublines were selected from the wild-type T47D cells by gradually increasing SN38 concentration. The sensitivity of the cells to anti-cancer drugs was assessed by 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Expression profiles of the resistance-related transporters were examined using RT-qPCR, and western blot analysis. Intracellular fluorescent dye accumulation in the resistant cells was determined using flow cytometry.ResultsThe SN38-resistant T47D breast cancer cell sublines T47D/SN120 and T47D/SN150 were established after long-term exposure (more than 16 months) of wild-type T47D cells to 120 nM and 150 nM SN38, respectively. T47D/SN120 and T47D/SN150 cells were more resistant to SN38 (14.5 and 59.1 times, respectively), irinotecan (1.5 and 3.7 times, respectively), and topotecan (4.9 and 12 times, respectively), than the wild-type parental cells. Both T47D/SN120 and T47D/SN150 sublines were cross-resistant to various anti-cancer drugs. These resistant sublines overexpressed mRNAs of MRP1, MRP2, MRP3, MRP4, and BCRP. The DNA methylase inhibitor 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor trichostatin A increased the expression levels of BCRP, MRP1, MRP2, MRP3, and MRP4 transcripts in T47D/WT cells. Fluorescent dye accumulation was found to be lower in T47D/SN120 and T47D/SN150 cells, compared to that in T47D/WT cells. However, treatment with known chemosensitizers increased the intracellular fluorescent dye accumulation and sensitivity of anti-tumor agents.ConclusionT47D/SN120 and T47D/SN150 cells overexpressed MRP1, MRP2, MRP3, MRP4, and BCRP, which might be due to the suppression of epigenetic gene silencing via DNA hypermethylation and histone deacetylation. Although these resistant cells present a higher resistance to various anti-cancer drugs than their parental wild-type cells, multidrug resistance was overcome by treatment with chemosensitizers. These SN38 resistant T47D breast cancer cell sublines expressing resistance proteins can be useful for the development of new chemosensitizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call