Abstract

We examined the effect of SN-6, a new benzyloxyphenyl Na(+)/Ca(2+) exchange (NCX) inhibitor on the Na(+)/Ca(2+) exchange current (I(NCX)) and other membrane currents in isolated guinea pig ventricular myocytes using the whole-cell voltage-clamp technique. SN-6 suppressed I(NCX) in a concentration-dependent manner. The IC(50) values of SN-6 were 2.3 microM and 1.9 microM for the outward and inward components of the bi-directional I(NCX), respectively. On the other hand, SN-6 suppressed the outward uni-directional I(NCX) more potently (IC(50) value of 0.6 microM) than the inward uni-directional I(NCX). SN-6 at 10 microM inhibited the uni-directional inward I(NCX) by only 22.4+/-3.1%. SN-6 and KB-R7943 suppressed I(NCX) more potently when intracellular Na(+) concentration was higher. Thus, both drugs inhibit NCX in an intracellular Na(+) concentration-dependent manner. Intracellular application of trypsin via a pipette solution did not change the blocking effect of SN-6 on I(NCX). Therefore, SN-6 is categorized as an intracellular-trypsin-insensitive NCX inhibitor. SN-6 at 10 microM inhibited I(Na), I(Ca), I(K) and I(K1) by about 13%, 34%, 33% and 13%, respectively. SN-6 at 10 microM shortened the action potential duration at 50% repolarization (APD(50)) by about 34%, and that at 90% repolarization (APD(90)) by about 25%. These results indicate that SN-6 inhibits NCX in a similar manner to that of KB-R7943. However, SN-6 at 10 microM affected other membrane currents less potently than KB-R7943.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.